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DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent
manipulation of its external environment. A theoretical framework for determination of the optimal dynamic
operating conditions of DNA amplification reactions, for any specified amplification objective, is presented
based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a
problem in control theory with optimal solutions that can differ considerably from strategies typically used in
practice. Using the Polymerase Chain Reaction (PCR) as an example, sequence-dependent biophysical models
for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by
a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal
temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control
problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis
of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate
control problems for more advanced amplification objectives corresponding to the design of new types of
DNA amplification reactions.

I. INTRODUCTION

DNA amplification refers to a class of methods that
can achieve geometric growth of the number of double-
stranded DNA (dsDNA) molecules through repeated
polymerization on single-stranded DNA (ssDNA) tem-
plates. Such methods have arguably become the central
technology of experimental molecular biology and bio-
chemistry, due to the fact that DNA amplification is re-
quired almost universally in applications ranging from
molecular cloning to DNA sequencing. The most com-
mon DNA amplification reaction is the polymerase chain
reaction (PCR), a cyclic amplification process that can
produce millions of copies of dsDNA molecules starting
from a single molecule, by repeating three steps – (i) ds-
DNA denaturation, (ii) oligonucleotide primer annealing
to the resulting ssDNAs, and (iii) polymerase-mediated
extension steps to produce two dsDNA molecules – re-
sulting in geometric growth of the number of DNA
molecules.

In addition to its importance as the primary method
for preparing copies of dsDNA, DNA amplification is a
model system for the study of fundamental properties
of the dynamics and control of sequence replication1–4.
DNA amplification is concerned with the promotion of
replication of a given sequence by time-dependent manip-
ulation of the external environment. In this regard it is
important to distinguish the theory of DNA amplification
dynamics from that of Darwinian evolution. Darwinian
evolutionary theory is concerned with the problem of se-
quence evolution or optimization through replication in
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the presence of a static or specified time-varying exter-
nal environment. This encompasses strategies such as
laboratory directed evolution, which apply external se-
lection pressure to a population of sequences in order
to promote the optimization of fitness through sequence
evolution5. Darwinian evolution assumes the ability of
a system to both self-replicate and mutate. It is gen-
erally acknowledged that during the early stages of pre-
biotic evolution, protocells consisting of compartmental-
ized nucleic acids were not capable of self-replication un-
der time-invariant environmental conditions. As such,
they required time-varying environmental inputs to im-
prove replication efficiency6 prior to the onset of Dar-
winian evolution. For example, time-varying tempera-
ture profiles capable of driving nucleic acid replication
may have occurred on the early earth due to diurnal
cycles of heating and cooling or temperature gradients
generated by geothermal activity7. Mutations occurring
during these cycles of environmentally controlled replica-
tion may then have led to functional nucleic acids that
ultimately developed the ability to self-replicate8. Thus,
unlike the Darwinian paradigm of selective replication
of the fittest sequences in an uncontrolled environment,
control of DNA amplification may involve selection of
time-varying inputs that promote the survival and repli-
cation of otherwise less fit sequences. Hence the theory of
DNA amplification dynamics is distinct from the theory
of evolutionary dynamics9,10 – although they are closely
related since both are concerned with the dynamics of
sequence replication.

In DNA amplification by the polymerase chain reac-
tion, the time-varying environmental input is achieved
through thermal cycling of the reaction mixture. In or-
der to compute the optimal temperature cycling protocol
for the reaction - which is sequence-specific - a dynamic
model for DNA amplification capable of predicting the
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evolution of reaction products for general sequences and
operating conditions is required. However, in the absence
of such a dynamic model, the operating conditions for
PCR reactions are typically selected based on analysis of
reaction thermodynamics, and, to a lesser extent, qual-
itative analysis of reaction kinetics. Reductions in cy-
cle efficiency (either through decreased reaction yield or
specificity compared to the theoretical maximum values)
therefore commonly occur - and due to geometric growth,
this can result in dramatically diminished efficiency of the
overall reaction. This has led to considerable interest in
the development of methods for improvement of DNA
amplification efficiency11,12.

A general approach to dynamic optimization of DNA
amplification could be used to systematically design new
types of amplification reactions13 corresponding to spec-
ified sequence amplification objectives, as well as to en-
hance existing reactions. A simple example of a tem-
perature cycling protocol that involves modifications to
the conventional prescription is the use of two-step PCR
cycles, wherein annealing and extension occur simulta-
neously at a properly chosen temperature. Another im-
portant example of modified temperature cycling is the
method of co-amplification at reduced denaturation tem-
perature (COLD-PCR)13, which enriches the amplifica-
tion of low copy number mutant sequences that are as-
sociated with early cancer prognosis, in the presence of
a vastly more concentrated wild-type DNA background.
This approach introduces intermediate steps in each PCR
cycle to achieve mutant enrichment. Still another ex-
ample arises in the problem of multiplex PCR, where
annealing temperatures must be chosen such that sev-
eral primers can simultaneously anneal, while avoiding
the formation of mismatched hybrids. Over the past two
decades, many other variants of DNA amplification have
been invented based on the notions of DNA denaturation,
annealing and polymerization, each tailored to a partic-
ular amplification objective. Each such reaction (which
is typically assigned its own acronym) is based on a tem-
perature cycling protocol determined through analysis of
reaction thermodynamics and kinetics. Formulation of
DNA amplification problems as optimal control problems
should provide a general framework for the discovery of
new classes of such reactions.

This paper is concerned with the establishment of a
foundation for the optimal control of DNA amplification
reactions, which can be used for the automated compu-
tation (rather than qualitative selection) of temperature
cycling protocols. Control theory provides a convenient
means of parameterizing the interaction of a reaction net-
work for molecular sequence replication with an exter-
nal environment. To our knowledge, a theory of optimal
environmental control of molecular sequence replication
has not been proposed. We formulate this theory for the
model system of DNA amplification via the polymerase
chain reaction.

For dynamic optimization of DNA amplification, a
sequence-dependent state space model is required. A

sequence-dependent state space model is a system of
differential equations that, when solved, describe the
dynamics of the evolution of particular biopolymer se-
quences, along with algebraic constraints and specified
parameters (e.g., rate parameters such as activation en-
ergies and pre exponential factors) whose values are ei-
ther predicted based on first-principles theory, indepen-
dently measured in offline experiments, or indirectly esti-
mated through online measurement of observable quan-
tities (such as total DNA concentration).

In this paper, we use first-principles sequence-
dependent kinetic models recently introduced in
(Marimuthu, K., Jing., C and Chakrabarti, R, Submit-
ted to Biophysical Journal) and14 to formulate amplifi-
cation of DNA as a problem in control theory with opti-
mal solutions that can differ considerably from strategies
typically used in practice. First, the notion of sequence-
dependent control systems of biochemical reaction net-
works is introduced. Control systems corresponding to
several DNA amplification models are then formulated
and compared. Next, we formulate optimal control prob-
lems based on the sequence-dependent kinetic model for
DNA amplification and specified objectives. Besides se-
quence dependence, another novel feature of control of
DNA amplification is the cyclic nature of optimal tem-
perature control strategies, which are usually assumed
to be periodic. We show that the optimal control strat-
egy for DNA amplification will change depending on the
stage of the reaction, due to changes in the availability of
resources required for replication, and demonstrate how
the control problem can be formulated to enable predic-
tion of aperiodic manipulated input functions. Finally,
strategies for the optimal synthesis are proposed for each
stage of amplification.

II. SEQUENCE AND TEMPERATURE DEPENDENT
KINETIC MODEL FOR DNA AMPLIFICATION

In Marimuthu et al (Marimuthu, K., Jing, C., and
Chakrabarti, R. Submitted to Biophysical Journal), a
sequence and temperature dependent state space model
for DNA amplification was developed by the authors,
and model parameters were estimated using experimen-
tal datasets. In this section we summarize and further
develop this model, which is used in the present work to
study the control of DNA amplification.

A. Annealing

Reaction R1 represents the annealing reaction of an
oligonucleotide primer (P) and single stranded template
DNA (S):

S + P
kf


kr
SP (R1)
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Marimuthu and Chakrabarti14 developed a theoretical
framework that couples the equilibrium thermodynam-
ics and relaxation kinetics to estimate the sequence and
temperature dependent annealing rate constants. The
forward and reverse rate constants kf , kr of annealing
reaction R1 are expressed in terms of the equilibrium
constant Kannealing and relaxation time τ , where

Kannealing = exp (−∆G/RT ) = kf/kr (1)

and

τ =
1

kf ([Seq] + [Peq]) + kr
. (2)

∆G in Eq. (1) can be estimated using the Nearest
Neighbor Model of hybridization thermodynamics15,16.
τ , which is a characteristic time constant that determines
the evolution of reaction coordinates after perturbation
from equilibrium, can be computed at a chosen tempera-
ture either one- or two-sided melting master equations14.
For one-sided melting, the master equation is that of a
biased one-dimensional random walk with partially re-
flecting boundary conditions. The walk is biased because
the forward and reverse reaction rates are not equal. The
master equation for one-sided melting of a homogeneous
sequence is given by

∂

∂t
ρa (0, t) = −ka1ρa (0, t) + ka−1ρa (1, t)

∂

∂t
ρa (j, t) = −

(
ka1 + ka−1

)
ρa (j, t) + ka1ρa (j − 1, t) +

+ ka−1ρa (j + 1, t) , j = 1, · · · , n− 1

∂

∂t
ρa (n, t) = −ka−1ρa (n, t) + ka1ρa (n− 1, t) (3)

where ρa (j, t) denotes the occupation probability of du-
plexes with i base pairs in the annealed/hybridized state
at time t. The transition rates ka1 and ka−1 denote the
forward and reverse rate constants for hybridization of
a base pair. Eigendecomposition of the corresponding
state space matrix that is equivalent to the master equa-
tion represented by Eq. 3 directly provides the relax-
ation time as the negative reciprocal of the maximum
eigenvalue of the state space matrix. Marimuthu and
Chakrabarti14 developed a theoretical method to esti-
mate the sequence and temperature dependent relaxation
time of reaction R1 and provided correlations to estimate
model parameters k1 and k−1. In addition to these pa-
rameters, the model includes a nucleation factor σ for
hybridization and the physical interpretation and esti-
mation of this parameter are discussed in14.

Thus, it is possible to calculate the left hand side of
Eq. (2) for any oligonucleotide sequence. Then, solving
Eq. (1) and Eq. (2) simultaneously, we can obtain the
rate constants kf and kr.

B. Polymerase Binding and Extension

Marimuthu et al (Marimuthu, K., Jing, C., and
Chakrabarti, R. Submitted to Biophysical Journal) es-
timated the enzyme binding and extension rate con-
stants experimentally using the theory of processivity
and Michaelis-Menten (MM) kinetics. Reaction R2 rep-
resents the simplified mechanism of these reactions.

E +Di

ke1


ke−1

E.Di +N
ke2


ke−2

E.Di.N
kcat→ EDi+1

ke−1



ke1

E +Di+1,

i = 0, · · · , n− 1. (R2)

Here Di denotes a partially extended primer-template
DNA with i added bases (D0 ≡ SP ), E.Di denotes its
complex with polymerase enzyme E and N denotes nu-
cleotide. For the purpose of model parameter estima-
tion, the reaction mechanism R2 is studied under so-
called single hit conditions in which polymerase concen-
trations are sufficiently low that the probability of en-
zyme re-association is approximately 0. Hence enzyme-
template association occurs only during the initial equi-
libration of enzyme with SP. Assuming the intermediate
E.Di.N is at steady state during the initial rate measure-
ments, it can be omitted from the model and the transi-
tion rate for nucleotide addition is kcat

KN
[N ] ≡ ke, where

KN = (ke−2 + kcat)/k
e
2. In a single molecule continuous-

time Markov chain formulation, evolution of the E.Di

and Di molecules can then be written in terms of the
probabilities of states [E.D0, D0, E.D1, D1, ...] according
to the master equation

∂

∂t
ρe (0, t) = −

(
ke + ke−1

)
ρe (0, t)

∂

∂t
ρe (j, t) = ke−1ρe (j − 1, t) , j = 1, 3, 5, · · · , 2n− 3

∂

∂t
ρe (j + 1, t) = −(ke + ke−1)ρe(j + 1, t) + keρe (j − 1, t)

∂

∂t
ρe (2n− 1, t) = ke−1ρe (2n− 2, t) ; ρe (0, 0) = 1

(4)

where ρe (j, t) denotes the probability of the polymerase
being in state j at time t, ke−1 dt denotes the condi-
tional probability of transition E.Di → E+Di in time dt,
and k dt denotes the conditional probability of transition
E.Di → E.Di+1 in time dt. The solution to the mas-
ter equation can be obtained analytically through Jor-
dan decomposition of the degenerate fundamental ma-
trix (or Laplace transformation) of the following equiva-
lent state space representation of (4) with rescaled time
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(t′ = (ke + ke−1)t):

dρ

dt′
=



−1 0 0 0 0 · · · 0
ke−1

ke−1+ke 0 0 0 0 · · · 0
ke

ke−1+ke 0 −1 0 0 · · · 0

0 0
ke−1

ke−1+ke 0 0 · · · 0

0 0 ke

ke−1+ke 0 −1 · · · 0

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 0


ρ(t′) (5)

where ρ(t′) = [pE.D0
(t′), pD0

(t′), ...]T is the probability
distribution of states at time t′.

For the specified boundary conditions, the system con-
verges to the distribution

π =

[
0,

ke−1

ke + ke−1

, 0,
keke−1(

ke + ke−1

)2 , ..., 1− n−1∑
i=1

(ke)i−1ke−1(
ke + ke−1

)i
]T

(6)
Now let p denote the conditional probability of the poly-
merase not dissociating at position i. The probability of
dissociation at position/time i is

poff (i) = (1− p) pi−1 (7)

which describes the stationary distribution of Di

molecules at the end of the experiment. Equating 7 with
the corresponding components of π gives

ke−1 =
kcat
KN

[N ]
1− p
p

(8)

Eq. (8) expresses the enzyme dissociation rate con-
stant in terms of the microscopic processivity parame-
ter p and MM kinetic parameters kcat and KN . Typi-
cally, polymerase processivity is characterized in terms
of E[ioff ] =

∑
i ipoff (i) ≈ 1

1−p . kcat and KN are ob-

tained from Michaelis-Menten measurements of the ini-
tial rate of polymerase-mediated extension (Marimuthu,
K., Jing, C., and Chakrabarti, R. Submitted to Biophys-
ical Journal). With the value of k−1 estimated above
and the temperature-dependent equilibrium constant for
polymerase binding17, the temperature-dependent poly-
merase association rate constant k1 can also be esti-
mated.

C. Long DNA Melting

In the present study the DNA melting reaction is as-
sumed to be 100% efficient. However, Marimuthu et
al. (Marimuthu, K., Jing, C. and Chakrabarti, R., Sub-
mitted to Biophysical Journal) presented a theoretical
framework for the estimation of the DNA melting rate
constants using the concepts of domain melting and re-
laxation kinetics. The Poland-Scheraga algorithm18,19or
MELTSIM20 can be used to identify the discrete domains

of a long DNA molecule, and the overall equilibrium con-
stant for the melting of each domain can be obtained via
the following equation:

Kloop = σcf(N)

N∏
i=1

si (9)

where σc is referred as a cooperativity parameter20 that
constitutes a penalty on the statistical weight for melting

of the domain (
∏N
i=1 si) due to the free energy cost of dis-

sociation of an internal base pair and f(N) is a loop clo-
sure function that introduces a length dependence to the
free energy cost. A method for calculation of σc and f(N)
for a given domain has been explained in20. All of these
domains melt based on the two-state theory described in
the annealing model section, and therefore the relaxation
time for melting of each domain can be obtained analo-
gously. The domain that possesses the largest relaxation
time represents the rate limiting domain and this relax-
ation time is the relaxation time of the overall melting
process. Solving the corresponding equations (1) and (2)
for long DNA melting, the rate constants for the melting
reaction can be estimated.

III. DYNAMIC MODELS AND CONTROL SYSTEMS
FOR DNA AMPLIFICATION

In this section we establish a control theoretic frame-
work for dynamic optimization of DNA amplification.
Several classes of control systems, differing in their repre-
sentations of the sequence and temperature dependence
of chemical kinetic rate constants, are introduced. The
most general control system is based on the sequence-
and temperature-dependent state space model for DNA
amplification described above. Other control systems are
based on simplified PCR models previously proposed in
the literature21–24 and correspond to approximations to
the model described in Section II. For these latter models,
we only consider the previously developed model struc-
tures with rate constants estimated based on the above
approach, since Marimuthu et al (Marimuthu, K., Jing,
C., and Chakrabarti, R. Submitted to Biophysical Jour-
nal) have shown that the rate constants that were used in
the previously proposed models are thermodynamically
inconsistent.

Denoting by ui the ith rate constant, which can be
manipulated as a function of time, and by x the vector
of species concentrations, a general state space model for
chemical reaction kinetics can be written as follows:

dx

dt
= f(x, u) = g0 (x) +

m∑
i=1

uigi (x) , x(0) = x0 (10)

where

x ∈ Rn, u ∈ Rm, gi (x) : Rn → Rn
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The above form is called a control-affine system and
g0 (x) is called the drift vector field. The gi’s associated
with ui’s are referred to as control vector fields. The no-
tation ui is conventionally used to denote manipulated
input variables in control theory. However, in what fol-
lows we will use the notation ki since we will be dealing
exclusively with chemical rate constants.

A complete set of PCR reactions and state equations
have been provided in Supporting Information? . For
PCR amplification reactions, a general dynamic model
(assuming all gi’s are control vector fields coupled to
time-varying rate constants) can be written

dx(t)

dt
=

10∑
i=1

kigi (x (t)) (11)

k ∈ R10; k ≥ 0, x, gi (x) ∈ R4n+9, x ≥ 0, h (x) ∈ R5, h (x) = 0

k =

[
km k−m k1

f k1
r k2

f k2
r ke1 ke−1

kcat
KN

k′cat

]
where n denotes the number of base pairs, g1 (x) and
g2 (x) represent the melting reaction alone, g3 (x) to
g6 (x) represent the annealing reactions alone, g7 (x) to
g10 (x) represent the extension reactions and h (x) de-
notes a set of 5 independent nonlinear constraints en-
forcing chemical mass balance, which cause the system to
evolve on a state manifold X ⊂ R4n+9 that is of dimen-
sion 4n+4. Hence the dimension of the state manifold is
also sequence-dependent. x, g (x) and h (x) for a simplex
PCR with n = 2 are presented below.

x =
[
S1, S1P1, E.S1P1, D

1
1, E.D

1
1, E.D

1
2, S2, S2P2, E.S2P2, D

2
1, E.D

2
1, E.D

2
2, DNA,P1, P2, N,E

]T
g1(x) = [x13 0 0 0 0 0 x13 0 0 0 0 0 − x13 0 0 0 0]

T

g2(x) = [−x1x7 0 0 0 0 0 − x1x7 0 0 0 0 x1x7 0 0 0 0]
T

g3(x) = [−x1x14 x1x14 0 0 0 0 0 0 0 0 0 0 0 − x1x14 0 0 0]
T

g4(x) = [x2 − x2 0 0 0 0 0 0 0 0 0 0 0 x2 0 0 0]
T

g5(x) = [0 0 0 0 0 0 − x7x15 x7x15 0 0 0 0 0 0 − x7x15 0 0]
T

g6(x) = [0 0 0 0 0 0 x8 − x8 0 0 0 0 0 0 x8 0 0]
T

g7(x) = x17 [0 − x2 x2 − x4 x4 0 0 − x8 x8 − x10 x10 0 0 0 0 0 − (x2 + x4 + x8 + x10)]
T

g8(x) = [0 x3 − x3 x5 − x5 0 0 x9 − x9 x11 − x11 0 0 0 0 0 (x3 + x5 + x9 + x11)]
T

g9(x) = x16 [0 0 − x3 0 x3 − x5 x5 0 0 − x9 0 x9 − x11 x11 0 0 0 (x3 + x5 + x9 + x11) 0]
T

g10(x) = [0 0 0 0 0 − x6 0 0 0 0 0 − x12 0 0 0 0 x6 + x12]
T

h1 (x) = x0
14 − x0

1 + x1 − x14 (12)

h2 (x) = x0
15 − x0

7 + x7 − x15 (13)

h3 (x) = x0
1 + x0

7 −

(
13∑
i=1

xi

)
−
(
x16

KN

) ∑
i=3,5,9,11

xi


(14)

h4 (x) =
x0

16 −
(∑

i=4,5,10,11 xi

)
− 2 (x6 + x12 + x13)(

1 + 1
KN

)(∑
i=5,11 xi

) − x16

(15)

h5 (x) = x0
17 −

(
1 +

x16

KN

) ∑
i=3,5,9,11

xi

− x6 − x12

(16)

Additional constraints, including equality constraints,
may also be applied to the vector of rate constants k,
due e.g. to their dependence on a single manipulated in-
put variable, temperature. As shown in Marimuthu et al
(Marimuthu, K., Jing, C., and Chakrabarti, R. Submit-
ted to Biophysical Journal) except for the extension reac-
tion rate constants, all other rate constants are sequence-
dependent. Therefore, the equality and inequality con-
straints on controls are sequence-dependent. As a result
of this the kigi in Eq. (11) are also sequence-dependent.

We now introduce several types of control systems that
are based on the above general formulation, but differ in
terms of additional constraints they apply to the con-
trols ki and the approximations they make regarding the
sequence and temperature dependence of these controls.
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A. Staged Time Invariant (On-Off) DNA Amplification
Model (STIM)

Mehra and Hu21 treated melting, annealing and ex-
tensions steps independently and did not consider the
dissociation of E.Di molecules into E and Di in reac-
tion R2. The state equations of the melting, annealing,
and extension reactions were solved independently. Also,
the rate constants of the respective reactions were held
constant21. We call this kind of PCR model a ’Staged’ or
’On-Off’ time invariant DNA amplification model, since
the control vector fields are assumed to be either turned
on or off at each step of a PCR cycle. Table I presents
its model structure. The system is controlled by manip-
ulating the switching times between steps.

B. Time Invariant DNA Amplification Model (TIM)

Stolovitzky and Cecchi24 combined melting, annealing
and extension together and formed a state space system
for an overall reaction time (summation of the reaction
times of melting, annealing, and extension). The rate
constants are, however, held constant; i.e., k is not a
function of time. For example, annealing (primer hy-
bridization) rate constants are not changed based on the
annealing and extension temperatures. We call this kind
of PCR model a time invariant DNA amplification model
and its model structure is given in Table I. The defini-
tions of xi, ki and gi are the same as those given in the
staged time invariant DNA amplification model. Note
that, unlike the STIM, the TIM system is formally not
a control system since there are no manipulated input
variables.

C. Time Varying DNA Amplification Model with Drift
(TVMD)

As we have discussed above, Mehra and Hu21 devel-
oped a staged time invariant model. For the same model
structure, one might vary the rate constants in each step
to develop a staged time varying model. The staged
time varying PCR model is a special case of a time vary-
ing model with drift. In a state space model, if a spe-
cific set of control variables are kept constant, then the
type of state space system is called a time-varying model
with drift. During the melting step, the control vari-
ables corresponding to the other two steps can be kept
constant and the corresponding approximations can be
made in the annealing and extension steps as well. Ta-
ble I presents such a model structure. The accuracy of
drift approximations can be evaluated by comparison of
the relative magnitudes of the reaction rate constants at
specified temperatures, which are presented in Fig. 1.
It can be seen that if drift is set to zero in the above
model, it reduces to a staged time varying PCR model.
Note that drift vector fields for DNA amplification con-
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FIG. 1. Temperature Variation of the DNA Amplification
Rate constants. Annealing rate constants have been obtained
for a primer with 15 base pairs. The second order forward
annealing rate constant, forward enzyme binding rate con-
stant and extension rate constants have been multiplied with
Primer concentration (1 µM), Enzyme concentration (10 nM)
and Nucleotide Concentration (800 µM). Annealing and ex-
tension temperatures are assumed to be 35 and 72 0C, respec-
tively. The step changes in rate constants depict the effects
of change in 2 0C in temperature. During the melting step all
other rate constants have been assumed to be zero and the
melting rate constant is assumed to be 104.

trol systems are sequence-dependent due to sequence de-
pendence of the associated ki’s.

D. Time Varying DNA Amplification Model (TVM)

The time-varying PCR model allows the melting, an-
nealing, and enzyme binding/extension vector fields to
be applied simultaneously and allows time varying ma-
nipulation of the corresponding temperature-dependent
rate constants described in Section II. x (t) and gi (x (t))
are the same as in the time invariant model. The only
change here is that k (t) is a function of time. Since
the rate constants vary with respect to time, this model
structure is useful for optimal control calculations that
provide the optimal temperature profile by considering
the whole state space. Hence, fully time-varying models
do not require specification of annealing and extension
steps in advance.

IV. COMPARISON OF MODEL-PREDICTED DNA
AMPLIFICATION DYNAMICS

Several of the control systems introduced above
(STIM, TIM, TVMD) make approximations regarding
the magnitudes and temperature variation of the rate
constants ki that enable the corresponding vector fields
to be treated either as drift or to be turned off during cer-
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TABLE I. Classification of DNA amplification control systems

STIM TIM TVM TVMD
Reaction Steps g0 (x) f (x, k) g0 (x) f (x, k) g0 (x) f (x, k) g0 (x) f (x, k)

Melting 0
∑2

i=1 kigi (x (t)) 0
∑10

i=1 kigi (x (t)) 0
∑10

i=1 ki (t) gi (x (t))
∑10

i=3 kigi (x (t))
∑2

i=1 kigi (x (t))
Annealing 0

∑6
i=3 kigi (x (t)) 0

∑10
i=1 kigi (x (t)) 0

∑10
i=1 ki (t) gi (x (t))

∑10
i=1,2,7 kigi (x (t))

∑6
i=3 kigi (x (t))

Extension 0
∑10

i=7 kigi (x (t)) 0
∑10

i=1 kigi (x (t)) 0
∑10

i=1 ki (t) gi (x (t))
∑8

i=1 kigi (x (t))
∑10

i=7 kigi (x (t))

tain steps of PCR. In temperature-controlled DNA am-
plification, where ki = ki(T ), these approximations may
not be valid for arbitrary DNA sequences. The variation
of melting, annealing, enzyme binding and extension rate
constants with respect to time in each step of a standard
PCR protocol, depicted in Fig. 1, clearly indicates simul-
taneous annealing, enzyme binding and extension. The
effects of 2 0C changes in the temperatures of each step
are depicted to assess the validity of drift approximations.
Fig. 2 compares the evolution of the DNA concentration
in a first PCR cycle based on the above models. It is
clear from Fig. 2 that the time invariant model is unre-
alistic as it completes the annealing and extension within
20 s during the annealing step. However, the predictions
of the time-varying model are consistent with the gen-
eral Real-Time PCR temperature cycling prescription.
The staged time invariant model does not account for
the E.Di dissociation and enzyme binding during the an-
nealing step. As a result of this, it can be seen in Fig. 2
that the whole extension reaction is completed within 5
seconds and this contradicts the general Real-Time PCR
experimental observations.

Therefore, we conclude that the time-varying PCR
model is required for dynamic optimization of reac-
tion conditions that can exploit the simultaneous reac-
tions that have been demonstrated to play an impor-
tant role in PCR dynamics (Marimuthu, K., Jing, C.,
and Chakrabarti, R. Submitted to Biophysical Journal).
Proper modeling of temperature-controlled DNA ampli-
fication requires equality constraints to be applied to the
components of the vector of rate constants k, based on
biophysical modeling of the temperature dependence of
the rate constants. We impose these constraints in Sec-
tion VI B.

V. SUBOPTIMALLY CONTROLLED GEOMETRIC
AMPLIFICATION OF DNA

Standard PCR cycling strategies are based on approx-
imations (like the STIM in Table I) to the true dynam-
ics of PCR. In this section, we show that these cycling
strategies are suboptimal given the actual sequence- and
temperature-dependent dynamics. We simulate the geo-
metric growth of DNA concentration, using the sequence-
and temperature-dependent TVM model for DNA ampli-
fication, for various choices of manipulated inputs, estab-
lishing lower bounds on the margin of improvement that
can be achieved through use of optimal cycling strategies.
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FIG. 2. Comparison between staged time-invariant (on-off),
time-invariant and time-varying models. Annealing time and
temperature are fixed to be 45 seconds and 30 0C. Extension
time and temperature are fixed to be 30 seconds and 72 0C.
Since the melting step is neglected in this simulation, the
reaction time is sum of the annealing and extension times
only. The time-varying model with drift is not shown since
the choice of drift vector field is not unique.

Figs 3(a) and 3(c) depict the temperature cycling
protocols considered. In (Marimuthu, K., Jing, C.,
and Chakrabarti, R. Submitted to Biophysical Journal),
the importance of simultaneous annealing and extension
(vector fields g3 to g6 and g7 to g10, respectively) was
demonstrated through transient dynamics simulations of
single PCR cycles. Generally, lower annealing temper-
atures increase the primer hybridization efficiency, but
higher annealing temperatures increase the polymerase
binding and extension rates. The initial species concen-
trations and reaction time determine which effect dom-
inates. Here, we examine the net effect of these vector
fields on the geometric growth rate of DNA concentration
using the aforementioned choices of manipulated inputs,
illustrating the role played by the initial species concen-
trations at the start of a cycle (which vary with the stage
of PCR) in determining the growth rate. The follow-
ing primers were used in the study: P1: GCTAGCTG-
TAACTG (Tm = 400C) and P2: GTCTGCTGAAACTG
(Tm = 420C). Equilibrium melting curves for the primers
are provided in the Supporting Information? .
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A. Geometric growth of DNA at low reaction time

The geometric growth of DNA concentration in Fig.
3(b) is similar to that of a typical real time PCR. In Fig.
3(b), the aim is to maximize the concentration of DNA
at a specified time by modifying the temperatures of the
PCR reaction steps. At 50 0C, as shown in Fig. 3(b), the
efficiency is much lower than that at 30 to 45 0C, due to
the lower melting temperature of the primers.

When the enzyme concentration is in large excess com-
pared to the DNA concentration during the initial stage
of PCR, the enzyme binding reaction is a pseudo-first or-
der reaction. Therefore, the evolution of the DNA con-
centration in a particular cycle in this stage does not
depend on enzyme concentration. Due to the compara-
ble enzyme and target DNA concentrations in the second
stage of PCR, which leads to a second-order enzyme bind-
ing reaction after 24 cycles, the lower enzyme binding and
extension rates reduce the efficiency at 30 0C annealing
temperature. At 45 0C, the primer hybridization effi-
ciency is lower; this effect dominates and decreases the
geometric growth rate in the initial stage of PCR, but the
higher polymerase binding and extension rates dominate
in the later cycles of PCR, resulting in a final DNA con-
centration similar to that at 40 0C after 29 cycles. Once
the DNA concentration is equal to the enzyme concentra-
tion in the second stage of PCR, the latter will become
the limiting reactant. Given more reaction time, the en-
zyme could bind to and polymerize excess SP templates
after it dissociates from fully-extended dsDNA.

B. Geometric growth of DNA at high reaction time

The maximum amount of DNA that can be obtained
from PCR is equal to the initial concentration of primers.
As shown above, in the final stage of PCR, when the over-
all reaction time is low the maximum DNA concentration
that is obtained is less than the initial concentration of
primers. This suggests that there can be some improve-
ment in the final DNA concentration if the reaction times
are also changed appropriately. Therefore, the annealing
time was increased to 120 seconds. As presented in Fig.
3(d), with this change, the DNA concentration after 25
cycles is higher than that of the previous study. A maxi-
mum concentration of 70 nM at 40 0C is obtained at the
end of 25 cycles when annealing time is increased to 120
seconds. When the reaction time is increased at higher
annealing temperature (45 0C), more DNA is produced
after 25 cycles than at lower temperature.

Once the enzyme has become the limiting reactant,
unless the enzyme molecules are released after convert-
ing the equivalent number of ssDNA into dsDNA, all
the ssDNA cannot be converted into dsDNA. As noted
above, since the enzyme binding and extension reactions
are faster at higher annealing temperatures, these tem-
peratures produce more DNA than lower annealing tem-
peratures.

Thus, from this study, we conclude that a systematic
procedure should be formulated to obtain the optimal
annealing time and temperature. Moreover, due to ge-
ometric growth, there can be a considerable difference
between the final DNA concentrations produced by con-
trol strategies (T (t)) based on misspecified and properly
specified DNA amplification models.

VI. CONTROL STRATEGY

In the previous section, we introduced control systems
for DNA amplification and studied the dynamics of geo-
metric growth of DNA for several types of manipulated
inputs. We showed that when the annealing time and
temperature were varied, due to geometric growth, there
was a considerable difference in the final DNA concentra-
tion. Therefore, the determination of optimal time and
temperature is essential. In this section we show how to
formulate and solve an optimal control problem to obtain
not just the optimal annealing time and temperature, but
the optimal PCR temperature cycling strategy for a par-
ticular amplification objective.

A. Optimal Control Problem formulation

In optimal control, the optimal evolution of a manip-
ulated variable is sought by minimizing or maximizing a
desired objective function. In a PCR, the manipulated
variable is the reaction temperature and the desired ob-
jective is to maximize the target DNA concentration at
the end of every cycle. We classify PCR optimal control
problems into two types as follows:

� Fixed time optimal control problem - Here we ob-
tain the optimal temperature profile that maxi-
mizes the desired DNA concentration profile in a
given fixed reaction time. If the cycle time is known
in advance, instead of following a grid based opti-
mization approach as shown in Fig. 3(b), it is pos-
sible to obtain the optimal temperature profile by
solving a fixed time optimal control problem.

� Minimal time optimal control problem - Here we
obtain the optimal temperature profile that mini-
mizes the overall reaction time for achievement of
a specified level of amplification. This allows auto-
mated determination of the cycle time and avoids
the need for sampling cycle times as was shown in
Figs. 3(a) and 3(c).

The desired objective can be expressed in the general
form:

J = F (x(tf )) +

∫ tf

0

L(x(t), u(t))dt (17)

F (x(tf )) is referred to as an endpoint or Mayer cost and∫ tf
0
L(x(t), u(t))dt is referred to as a Lagrange cost.
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FIG. 3. Initial concentrations of template, primer, enzyme, and nucleotide are 0.2 µM , 10 nM, 800 µM , respectively and
the annealing temperature is varied from 30 0C to 50 0C using grid based sampling. a) Temperature vs Time profile for an
annealing time of 45 seconds and extension time of 30 seconds. b) Geometric growth of DNA with shorter reaction reaction
time (45 s of annealing time). c) Temperature vs Time profile for an annealing time of 120 seconds and extension time of
30 seconds. d) Geometric growth of DNA with prolonged reaction reaction time (120 s of annealing time). In the geometric
growth curves that do not monotonically increase with cycle number, the decreases in DNA concentration are due to denatured
single strands that did not react with enzyme to form dsDNA

B. Fixed-time DNA amplification optimal control problem

In Fig. 3(b), for a fixed reaction time, we varied the re-
action temperature to maximize the DNA concentration.
This grid-based sampling approach is not an efficient way
to obtain the optimal temperature profile. Therefore, we
solve an optimal control problem with a desired objective
function that maximizes the DNA concentration. Typi-
cally a lower limit (Tmin) for the annealing temperature is
applied to reduce the operating temperature range. The
upper limit of the operating temperature range could be
the maximum melting temperature (Tmax). Hence lower
and upper limits for the PCR reaction temperature can
be applied and this can be expressed as an inequality
constraint for the optimal control problem. Thus the
following optimal control problem can be formulated to
maximize the target DNA concentration at the end of

each cycle:

min
T (t)

J =

4n+4∑
i=1

xi (tf ) (18)

s.t.
dx(t)

dt
=

10∑
i=1

ki,seq (T (t)) gi (x (t)) , x(0) = x0

(19)

Tmin ≤ T (t) ≤ Tmax (20)

x, gi (x) ∈ R4n+9, x ≥ 0, (21)

h (x) ∈ R5, h (x) = 0 (22)

where ki,seq(T ) denote the sequence- and temperature-
dependent rate constants described in Section II. i in
the objective function (Eq. (18)) indexes all the state
variables except for DNA, P1, P2, E, and N . Note
that due to the equality constraints h(x) = 0 on the

state vector,
∑4n+4
i=1 xi (tf ) uniquely determines x4n+5,

which is the DNA concentration, such that minimization
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of the former maximizes the latter. Eq. (18) specifies

a Mayer functional with F (x(tf )) =
∑4n+4
i=1 xi(tf ) and

L(x(t), u(t)) = 0.
The solution of the above optimal control problem pro-

vides the optimal trajectory for temperature (T ∗ (t)) and
concentration (x∗ (t)) profiles with respect to time. Note
that in this formulation, the control (manipulated input)
variable is the temperature T , since in PCR reactions the
rate constants are varied through temperature cycling.
This variable appears in the state equations through the
rate constants. Eq. (18) assumes a fixed total reaction
time for a given cycle. Since the objective function is
a Mayer functional, there are multiple solutions possible
for the above optimal control problem.

1. Rate constant as a control variable: Relationship
between PCR Rate Constants

The relationship between the temperature and the rate
constants is typically given by the Arrhenius equation

ki = k0i exp

(
−Eai
RT

)
(23)

Ea is the activation energy and k0 is the pre-exponential
factor. Ea represents the apparent activation enthalpy
of the reaction, whereas k0 is a function of the ap-
parent activation entropy of the reaction. In general,
these thermodynamic parameters may vary with temper-
ature. Temperature-dependent apparent activation en-
thalpy and entropy can be accommodated through gen-
eralizations of Eq. (23). However, we have shown in
(Marimuthu, K., Jing., C and Chakrabarti, R, Submit-
ted to Biophysical Journal) that Eq. (23) can provide a
reasonable approximation for the temperature variation
of PCR reaction rate constants.

Though in Eq. (19) we specified temperature as a con-
trol variable, as we see in Eq. (23) it appears in the expo-
nential term. This may introduce a strong nonlinearity
and hence causes computational difficulty to solve this
optimal control problem. In order to avoid this issue, it
is possible to use all these 5 rate constants as the control
variables and find their optimal evolution. In this for-
mulation, the optimal control problem can be re-written
as

min
k(t)

J =

4n+4∑
i=1

xi (tf ) (24)

dx(t)

dt
=

10∑
i=1

ki(t)gi(x(t)), x(0) = x0 (25)

x, gi (x) ∈ R4n+9, x ≥ 0 (26)

k ∈ R10, k ≥ 0, kmin1,seq ≤ k1 (t) ≤ kmax1,seq (27)

kj = αj,seqk
βj,seq

1 , j = 2, ..., 10 (28)

αj,seq = (k0j,seq/k01,seq)
βj,seq , βj,seq = Eaj,seq/Ea1,seq

h (x) ∈ R5, h (x) = 0 (29)

Where kmin1,seq and kmax1,seq are the lower and upper bounds
for the rate constants k1,seq correspond to Tmin and
Tmax. The subscript seq indicates the sequence depen-
dency. The control system defined by Eq. (25) is a special
case of Eq. (10). Thus, the optimal control and concen-
tration trajectory is denoted as

(
k∗seq (t) , x∗seq (t)

)
. This

trajectory can then be mapped onto the optimal trajec-
tory (T ∗seq(t), x

∗
seq(t)) using Eq. (23).

C. DNA amplification in minimal time: Time Optimal
Control

In Fig. 3(b) and Fig. 3(d) an arbitrary reaction time
has been chosen to obtain the DNA concentration pro-
file. Even though the amplification efficiency at certain
temperatures is nearly 100 %, the cycle reaction time and
hence the overall reaction time (sum of reaction time of
all the PCR cycles) can be further reduced. To achieve a
specified level of DNA amplification in the shortest pos-
sible time, the optimal control problem should be for-
mulated in such a way that the solution minimizes the
overall reaction time.

Minimization of the overall reaction time for DNA am-
plification can be achieved through a minimum time op-
timal control framework. In particular, the time optimal
control framework provides prescriptions for the optimal
cycle switching time on a formal mathematical basis.

In time optimal control, in addition to state variables,
evolution time also must be optimized. A Lagrange cost

of the form
∫ tf

0
dt corresponding to the evolution time

is used as an objective function and state vector is con-
strained to achieve a specified level of DNA amplification
at the end of a cycle as follows:

min
k(t)

J =

∫ tf

0

dt (30)

s.t.
dx(t)

dt
=

10∑
i=1

ki(t)gi(x(t)), x(0) = x0 (31)

x4n+5 (tf ) = x4n+5,f ≥ 2mx4n+5(0), m ∈ Z0+ (32)

x, gi (x) ∈ R4n+9, x ≥ 0, (33)

k ∈ R10, k ≥ 0, kmin1,seq ≤ k1 (t) ≤ kmax1,seq (34)

kj = αj,seqk
βj,seq

1 , j = 2, ..., 10 (35)

αj,seq = (k0j,seq/k01,seq)
βj,seq

βj,seq = Eaj,seq/Ea1,seq

h (x) ∈ R5, h (x) = 0 (36)

Note that x4n+5 = x0
1 +x0

2n+3−
∑4n+4
i=1 xi. Where x0

1 and
x0

2n+3 are the initial concentrations of first and second
single strand. m denotes the number of cycles for which
the time optimal solution is required. Thus, if m = 1,
x4n+5,f ≥ 2x4n+5(0), which implies that the time is min-
imized for amplification efficiency greater than 1, which
in turn implies that more than one cycle will be gener-
ated. The single cycle time optimal solution is obtained
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by considering k(t) up to the switching time between cy-
cles. In addition to the regular first order conditions for
optimality, additional optimality conditions must be sat-
isfied for the time optimal control problem (Eq. (30))
and these are described in25.

D. A Strategy for Optimal Synthesis of the DNA
Amplification Control Trajectory: Stage 1

From the enzyme concentration and the evolution of
DNA concentration throughout the amplification reac-
tion, the reaction can be separated into two stages. Stage
1 corresponds to a resource-unlimited environment for
sequence replication. Stage 2 begins when environmen-
tal resource limitations affect the probability of sequence
replication.

Stage 1 is comprised of all the cycles at which the en-
zyme concentration is higher than the target DNA con-
centration by 2 orders of magnitude so that a pseudo
first order kinetics for the enzyme binding reaction can
be assumed. Using grid-based sampling of experimen-
tal conditions, we have shown that the annealing time
for this stage could be around 45 s at a specific anneal-
ing temperature. In order to find the optimal time and
temperature protocol that improves upon the results in
Fig. 3(b) (cycles 1 to 15) in a systematic manner, a
fixed time optimal control problem can be formulated
(Eq. (24)). Alternatively, it is possible to formulate the
time optimal control problem (Eq. (30)) wherein the
objective is the minimization of the reaction time for a
specified target DNA concentration. For both problems,
an important feature of the solution k∗ (t) for multiple
cycles is that they are periodic under the pseudo-first or-
der approximation. This means that problem (Eq. (30))
need only be solved once. Here we consider the solu-
tion to such a problem where the temperatures as well
as switching times for the denaturation and annealing
steps are constrained such that k(t) = f(t). Note that
application of this constraint results in a control sys-
tem of the STIM type, wherein the only manipulated
input parameter is the switching time between the cy-
cles. However, the vector fields applied in each step are∑10
i=1 ki(T1)gi(x),

∑10
i=1 ki(T2)gi(x)

∑10
i=1, ki(T3)gi(x),

respectively, where T1, T2, T3 denote the temperatures of
the melting, annealing and extension steps, rather than
the vector fields listed for the STIM in Table I.

1. Optimal cycle switching time for control of geometric
growth

In this section, for a given temperature profile and
hence rate constant trajectory k(t) we find the optimal
switching time between cycles. For example, in Fig 3(b)
for a fixed reaction time of 105 seconds, at three different
temperatures we have estimated the target DNA concen-
tration profile. Now we will analyze those DNA concen-

tration profiles and estimate the optimal cycle time that
minimizes the overall reaction time in stage 1 of the PCR.
Since the optimal control profile is periodic in stage 1, the
optimal cycle time for all the cycles in this stage will be
the same.

Let 0 ≤ η ≤ 1 be the efficiency in the first cycle and
n (η) be the number of cycles in stage 1, then

(1 + η)
n(η)

= y (37)

where

y =
[DNA]n
[DNA]0

Here, [DNA]n denotes the concentration of DNA after
n cycles and [DNA]0 denotes the initial concentration of
DNA. From Eq. (37), the number of cycles n (η) can be
expressed as follows:

n (η) =
log (y)

log (1 + η)
(38)

Let t (η) be the time required for a cycle to achieve an
efficiency of η and the overall reaction time for stage 1
be ttotal(η); then

ttotal(η) = n (η) t (η) = t (η)
log (y)

log (1 + η)
(39)

Now we consider the following optimization problem to
minimize the overall reaction time ttotal:

min
η

ttotal(η) = min
η

t (η)
log (y)

log (1 + η)
(40)

Hence we seek η such that

d
(
t (η) log(y)

log(1+η)

)
dη

= 0 =⇒ 1

t (η)

dt

dη
=

1

(1 + η) (log (1 + η))
(41)

We solve the above equation graphically by plotting the
left hand side and the right hand side with respect to
η. From the given DNA concentration profile, it is pos-
sible to estimate the optimal efficiency (ηmin) and hence,
t (ηmin) that minimizes the overall reaction time for ge-
ometric growth in stage 1, subject to the specified con-
straints.

Note that the computation of the optimal cycle switch-
ing time with a given STIM model, as above, does not
provide the minimal cycle time that can be achieved with
a TVM model. Let t(η, T ∗), where T ∗ is time optimal in-
put obtained from solution of problem (Eq. (30)), denote
the optimal single cycle time for stage 1 as a function of
specified cycle efficiency η. Hence t (η) ≥ t (η, T ∗). Since
t (η) ≥ t (η, T ∗), ηmin = arg min t(η) computed above
for the suboptimal t (η) is smaller than ηmin for t (η, T ∗);
i.e., the cycle should be run at least as long as computed
based on the suboptimal t (η) using the above model, and

min
η

ttotal(η) ≥ min
η

t (η, T ∗)
log (y)

log (1 + η)
(42)
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FIG. 4. Optimal cycle efficiency at three different reaction
conditions. Temperature and time in the legend represent the
annealing temperature and time. Y axis represents the LHS
and RHS of Eq. (VI D 1 a). The intersection points specify
the optimal switching times between cycles.

a. Minimal reaction time example We consider a
PCR reaction with primers and reaction conditions that
are considered in Fig 3(b) and Fig 3(d). We consider an-
nealing temperatures, 35 and 40 0C from Fig. 3(b) and
40 0C from Fig. 3(d). It should be noted that cycle time
including the melting step in Fig. 3(b) is 105 seconds
and in Fig. 3(d) it is 270 seconds. Fig. 4 shows the opti-
mal efficiency for these three conditions and from this, in
each case the overall reaction time to reach the specific
DNA concentration (100 nM) has been calculated. This
is a constrained optimization version of the time optimal
problem (Eq. (30)) with the additional constraint that
k(t) = f(t). The problem is hence only to find tf (since
k(t) does not change).

Table II compares the overall reaction time under these
three conditions and it can be observed that given this
sample set, it is possible to reduce the overall reaction
time at the specific reaction temperatures.

TABLE II. Comparison between optimal cyclic efficiency un-
der different reaction conditions

Annealing Annealing Optimal Optimal Number of Overall
Temperature reaction Efficiency reaction of reaction (s)

(0C) time (s) (%) time cycles time (s)

35 45 76.09 102.2 16.2 1664
40 45 90.62 99.5 14.2 1421
40 120 98.68 165.3 13.4 2218

Fig. 5(a) illustrates the modified temperature protocol
based on this analysis. Fig. 5(b) compares the geometric
growth of DNA with respect to reaction time under the
above three reaction conditions.

Thus, we have shown that for a specified control vector
trajectory k(t) for a cycle, it is possible to reduce the
overall reaction time by application of the time optimal
cycle switching criterion for geometric growth. In the
above case, the optimal choice of annealing temperature
is 40 0C. In the above study, however, we did not consider
optimization of the annealing step for the minimization
of overall reaction time and hence this method naturally
optimizes only the extension reaction time at the end of
each cycle. This constraint will be relaxed in future work
to solve the time optimal control problem (Eq. (30))
using a TVM model.

2. Bilinear time-varying PCR model with and without drift

In stage 1, the primer and nucleotide concentrations
are always much higher than the target DNA concentra-
tion and the change in their values is negligible compared
to the primer and nucleotide concentrations. Therefore,
the primer and nucleotide concentration can be treated
as constant and hence the annealing and extension reac-
tions are pseudo-first order. The enzyme binding reaction
can also assumed to be a pseudo first order reaction, but
not for all the cycles in stage 1. In the last few cycles
of this stage, enzyme concentration can be comparable
with the target DNA concentration; therefore, except for
the last two cycles, it can be assumed that even enzyme
binding reaction also is a pseudo first order reaction. Fur-
thermore, it is also possible to assume that the melting
reaction is irreversible, as hybridization of ssDNA is neg-
ligible due to large excess of primers. Thus, the whole
PCR model can be expressed as a linear time varying
first order state space system. Since both control and
state variables vary with respect to time, to be precise,
the PCR model can be expressed as a bilinear control
system as follows

dx (t)

dt
=

(
A+

9∑
i=1

Biki (t)

)
x (t) (43)

k ∈ R9; k ≥ 0, x, gi (x) ∈ R4n+5, x ≥ 0, Φx = 0
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FIG. 5. a) Optimized cycling protocol at three different reaction conditions computed based on the cycle switching time
criterion depicted in Fig. 4. The legends refer to annealing temperatures and times; b)Geometric growth of DNA for three
different conditions

where

Φ = [S10/S1 − 1,−1,−c,−1,−c,−1, S20/S2 − 1,−1,−c,−1,−c,−1,−1]

c =

(
1 +

[N0]

KN

)

Since the association of ssDNA is neglected, the corre-
sponding rate constants have been eliminated and there-

fore, the total number of rate constants is 9 and the total
number of states is 4n + 5. If the whole system is time
varying, then A = 0, Bi is a 4n+ 5× 4n+ 5 matrix and

Bix (t) = gi (x (t)) (44)

x1 = [S1] , x2 = [S1P1] , x3 = [E.S1P1] , x2i+2 =
[
D1
i

]
, x2i+3 =

[
E.D1

i

]
∀i = 1, 2, ...n− 1

x2n+3 = [S2] , x2n+4 = [S2P2] , x2n+5 = [E.S2P2] , x2i+2n+4 =
[
D1
i

]
, x2i+2n+5 =

[
E.D1

i

]
∀i = 1, 2, ...n− 1

x2n+2 =
[
E.D1

n

]
, x4n+4 =

[
E.D2

n

]
, x4n+5 = [DNA]

k =

[
km k1

1 k1
2 k2

1 k2
2 ke1 ke−1

kcat
KN

k′cat

]
B1 represents the melting reaction. B2 and B3 repre-
sent the annealing of the 1st single strand and primer.
B4 and B5 represent the annealing of the 2nd single
strand and primer. B6 and B7 represent the enzyme
binding reactions. B8 and B9 represent the extension
reaction. Eq. (43) specifies a TVM model for stage 1.

The Bi’s for n = 2 have been provided in the Supporting
Information? .

� If the melting and annealing rate constant alone is
varied (TVMD for annealing step) then

dx (t)

dt
=

(
A+

5∑
i=1

Biki (t)

)
x (t) (45)
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Here A is a 4n+ 5× 4n+ 5 matrix and

Ax (t) = f (x (t)) =

(
9∑
i=6

kiBi

)
x (t) (46)

� If the enzyme binding and extension rate constant
alone is varied (TVMD for extension step) then

dx (t)

dt
=

(
A+

9∑
i=6

Biki (t)

)
x (t) (47)

Here A is a 4n+ 5× 4n+ 5 matrix and

Ax (t) = f (x (t)) =

(
5∑
i=1

Aki

)
x (t) (48)

For temperature control, constraints analogous to those
in Eq. (23) are imposed on the vector of rate constants.
The linear structure of the PCR state equations in Stage
1 is convenient for refinement of kinetic parameter es-
timates via linear filtering25, which will be discussed in
future work Moreover, it enables analytical solution of
the state equations for each step of PCR.

E. Stage 2: Multistep cycling

This stage is comprised of all the cycles at which the
enzyme concentration is comparable to or less than the
target DNA concentration. We have shown in Section
V that in Stage 2, annealing reaction time needs to be
increased in order to maximize the DNA concentration,
since enzyme must rebind to excess SP molecules after
dissociating from fully extended dsDNA. Though it is
possible to consume all the ssDNA by fixing a long an-
nealing time, this does not exploit the higher rate of ex-
tension at higher temperatures.

Therefore, in Stage 2 it is optimal to conduct anneal-
ing and extension multiple times in order to obtain higher
cyclic efficiency. If the initial concentration of the target
DNA at the beginning of a cycle is D0, which is greater
than or equal to the enzyme concentration, then the num-
ber of annealing and extension steps that needs to be con-
ducted within a given cycle to double the concentration
of D0 is given as

Ns =
2D0

E0
(49)

Based on Eq. (49), the number of annealing and ex-
tension steps required to double the target concentration
is O(D0/E0). By using the appropriate number of an-
nealing and extension steps per cycle, we can reduce the
overall PCR reaction time required to achieve a spec-
ified DNA concentration. Fig. 6(b) shows the evolu-
tion of DNA and enzyme molecules in a single annealing
step and multistep PCR for a cycle in which the initial

concentration of target and enzyme are 10 and 20 nM,
respectively and the goal is to achieve 40 nM DNA con-
centration. Fig. 6(a) compares the temperature profiles
for regular and multistep PCR.

For both the fixed time problem (Eq. (24)) and min-
imal time problem (Eq. (30)), a multi-step strategy is
generally a property of the optimal solution. In each of
cycle of this stage, in order to double to concentration
of the template DNA, annealing and extension needs to
be conducted multiple times. In minimum time optimal
control of geometric growth we have shown that 100%
efficiency need not be achieved. In such cases the num-
ber of steps in a cycle will be less than or equal to the
number of steps that was predicted by Eq. (49). In order
to determine the optimal number of steps, the minimal
time optimal control problem described above needs to be
solved, either for a single cycle (if the desired single cycle
efficiency is known) or for m ≥ 1 (for more than 1 cycle).
For both the fixed time and minimal time problems, the
optimal solutions k∗(t) for stage 2 are not periodic.

VII. CONCLUSION

In this work, the dynamics of DNA amplification re-
actions have been formulated from a control theoretic
standpoint. Optimal control problems for maximization
of a desired target DNA concentration (Eq. (24)) and
minimization of the overall cycle time (Eq. (30)) have
been specified and a strategy for the optimal synthesis
of the temperature cycling protocol has been presented.
Future work will consider the derivation of the optimality
conditions and optimal control laws for these problems26,
as well as those for control problems pertaining to other
DNA amplification objectives – including those that in-
volve the co-amplification of multiple DNA sequences13

and the automated design of new types of PCR reac-
tions. When applied to given sequences through the use
of state-of-the-art dynamic optimization strategies, these
laws prescribe the optimally controlled amplification dy-
namics of DNA.

We have presented a general framework for optimal
control of DNA amplification in terms of sequence- and
temperature-dependent rate constants. For a fixed se-
quence, solution of the control problem provides the op-
timal temperature profile corresponding to the specified
amplification objective. However, based on the sequence-
dependent kinetic model, it is also possible to consider
optimization of replication efficiency through sequence
mutations given a specified time-varying temperature
profile. According to control problem formulation (Eqs.
(24,25)), this relaxes constraints on the time-varying rate
constants, such that the replication dynamics are no
longer controlled by only a single function of time. More
generally, the framework presented is capable of accom-
modating problems wherein replication efficiency is opti-
mized through successive iterations of sequence evolution
and changes in the time-varying temperature profile.
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FIG. 6. Multistep PCR. a) Temperature profile for multiple annealing step (multi-step) and single annealing step PCR. b)
DNA concentration profile in multi-step PCR. In multi-step PCR, in a PCR cycle, annealing and extension was repeated four
times. In a single annealing step PCR, a long annealing time was maintained. Enzyme and template concentrations are 10 nM
and 20 nM, respectively, the primer concentration is 200 nM and the nucleotide concentration is 800 µ M.

The latter generalized dynamic optimization problem
is of interest in the context of the chemical evolution
of the earliest nucleic acid amplification reactions7. Re-
cent studies have considered how in the early stages
of prebiotic evolution, replication of nucleic acids in
minimal protocellular compartments may have occurred
nonenzymatically6, followed by the evolution of ribozyme
polymerases (replicases) within these compartments that
were capable of self-replication27. Both stages of chemi-
cal evolution likely required time-varying environmental
inputs in order to promote strand separation and poly-
merization in an alternating fashion. Indeed, studies have
shown that protocell membranes may have been capable
of withstanding temperatures of up to nearly 100 0C8,
and that PCR amplification within supramolecular vesi-
cles can induce vesicles to divide, thus suggesting that the
amplification of nucleic acids through temperature cy-
cling can be coupled to the replication of protocells28. Ef-
forts are underway to explore the extent to which an opti-
mal temperature profile for control of nucleic acid ampli-
fication, derived using the methods described herein, can
accelerate the evolution of increased replication efficiency
of nucleic acids through mutations.
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